How to represent part-whole hierarchies in a neural network - Crossminds
How to represent part-whole hierarchies in a neural network
A comprehensive graph mapping of key knowledge areas and research papers related to Geoffrey Hinton's new paper “Towards Causal Representation Learning”. Related research videos are sorted below by knowledge relevance, number of citations, and year published.
Other recommended papers
Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby
Ajinkya Tejankar, Soroush Abbasi Koohpayegani, Vipin Pillai, Paolo Favaro, Hamed Pirsiavash
Yining Hong, Qing Li, Song-Chun Zhu, Siyuan Huang
Allan Jabri, Andrew Owens, Alexei A. Efros
Daniel M. Bear, Chaofei Fan, Damian Mrowca, Yunzhu Li, Seth Alter, Aran Nayebi, Jeremy Schwartz, Li Fei-Fei, Jiajun Wu, Joshua B. Tenenbaum, Daniel L. K. Yamins
Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, Geoffrey Hinton
Nitish Srivastava, Hanlin Goh, Ruslan Salakhutdinov
Philip Bachman, R Devon Hjelm, William Buchwalter
Adam R. Kosiorek, Sara Sabour, Yee Whye Teh, Geoffrey E. Hinton
Aaron van den Oord, Yazhe Li, Oriol Vinyals
Jimmy Ba, Geoffrey Hinton, Volodymyr Mnih, Joel Z. Leibo, Catalin Ionescu