15 Keypoints Is All You Need - Crossminds
CrossMind.ai logo
Details
Authors: Michael Snower, Asim Kadav, Farley Lai, Hans Peter Graf Description: Pose-tracking is an important problem that requires identifying unique human pose-instances and matching them temporally across different frames in a video. However, existing pose-tracking methods are unable to accurately model temporal relationships and require significant computation, often computing the tracks offline. We present an efficient multi-person pose-tracking method, KeyTrack that only relies on keypoint information without using any RGB or optical flow to locate and track human keypoints in real-time. KeyTrack is a top-down approach that learns spatio-temporal pose relationships by modeling the multi-person pose-tracking problem as a novel Pose Entailment task using a Transformer based architecture. Furthermore, KeyTrack uses a novel, parameter-free, keypoint refinement technique that improves the keypoint estimates used by the Transformers. We achieve state-of-the-art results on PoseTrack'17 and PoseTrack'18 benchmarks while using only a fraction of the computation used by most other methods for computing the tracking information.

Comments
loading...
Reactions (0) | Note
    📝 No reactions yet
    Be the first one to share your thoughts!
loading...
Recommended