352 - DocVQA: A Dataset for VQA on Document Images

WACV 2021

Details
We present a new dataset for Visual Question Answering on document images called DocVQA. The dataset consistsof 50,000 questions defined on 12,000+ document images. We provide detailed analysis of the dataset in comparison with similar datasets for VQA and reading comprehension. We report several baseline results by adopting existing VQA and reading comprehension models. Although the existing models perform reasonably well on certain types of questions, there is large performance gap compared to human performance (94.36% accuracy). The models need to improve specifically on questions where understanding structure of the document is crucial.

Comments
loading...