[KDD 2020] Two Sides of the Same Coin: White-box and Black-box Attacks for Transfer Learning - CrossMinds.ai
[KDD 2020] Two Sides of the Same Coin: White-box and Black-box Attacks for Transfer Learning
Aug 13, 20205 views
Yinghua Zhang
Transfer learning has become a common practice for training deep,learning models with limited labeled data in a target domain. On,the other hand, deep models are vulnerable to adversarial attacks.,Though transfer learning has been widely applied, its effect on,model robustness is unclear. To figure out this problem, we conduct,extensive empirical evaluations to show that fine-tuning effectively,enhances model robustness under white-box FGSM attacks. We,also propose a black-box attack method for transfer learning models which attacks the target model with the adversarial examples,produced by its source model. To systematically measure the effect of both white-box and black-box attacks, we propose a new,metric to evaluate how transferable are the adversarial examples,produced by a source model to a target model. Empirical results,show that the adversarial examples are more transferable when,fine-tuning is used than they are when the two networks are trained,independently.
SIGKDD_2020
Recommended