[KDD 2020] Retrospective Loss: Looking Back to Improve Training of Deep Neural Networks - CrossMinds.ai
[KDD 2020] Retrospective Loss: Looking Back to Improve Training of Deep Neural Networks
Aug 13, 202021 views
Surgan Jandial
Deep neural networks (DNNs) are powerful learning machines that,have enabled breakthroughs in several domains. In this work, we,introduce a new retrospective loss to improve the training of deep,neural network models by utilizing the prior experience available,in past model states during training. Minimizing the retrospective,loss, along with the task-specific loss, pushes the parameter state at,the current training step towards the optimal parameter state while,pulling it away from the parameter state at a previous training step.,Although a simple idea, we analyze the method as well as conduct,comprehensive sets of experiments across domains - images, speech,,text and graphs - to show that the proposed loss results in improved,performance across input domains, tasks, and architectures.
SIGKDD_2020
Recommended