[KDD 2020] An Embarrassingly Simple Approach for Trojan Attack in Deep Neural Networks
CrossMind.ai logo

[KDD 2020] An Embarrassingly Simple Approach for Trojan Attack in Deep Neural Networks

Dec 16, 2020
With the widespread use of deep neural networks (DNNs) in highstake applications, the security problem of the DNN models has,received extensive attention. In this paper, we investigate a specific security problem called,trojan attack,, which aims to attack,deployed DNN systems relying on the hidden trigger patterns inserted by malicious hackers. We propose a training-free attack,approach which is different from previous work, in which trojaned,behaviors are injected by retraining model on a poisoned dataset.,Specifically, we do not change parameters in the original model,but insert a tiny trojan module (TrojanNet) into the target model.,The infected model with a malicious trojan can misclassify inputs,into a target label when the inputs are stamped with the special,trigger. The proposed TrojanNet has several nice properties including (1) it activates by tiny trigger patterns and keeps silent for,other signals, (2) it is model-agnostic and could be injected into,most DNNs, dramatically expanding its attack scenarios, and (3) the,training-free mechanism saves massive training efforts comparing,to conventional trojan attack methods. The experimental results,show that TrojanNet can inject the trojan into all labels simultaneously (all-label trojan attack) and achieves 100% attack success rate,without affecting model accuracy on original tasks. Experimental,analysis further demonstrates that state-of-the-art trojan detection,algorithms fail to detect TrojanNet attack. The code is available at,https://github.com/trx14/TrojanNet.