[KDD 2020] Hypergraph Clustering Based on PageRank - Crossminds
CrossMind.ai logo
[KDD 2020] Hypergraph Clustering Based on PageRank
Aug 13, 2020
|
5 views
Details
A hypergraph is a useful combinatorial object to model ternary or,higher-order relations among entities. Clustering hypergraphs is,a fundamental task in network analysis. In this study, we develop,two clustering algorithms based on personalized PageRank on hypergraphs. The first one is local in the sense that its goal is to find,a tightly connected vertex set with a bounded volume including a,specified vertex. The second one is global in the sense that its goal,is to find a tightly connected vertex set. For both algorithms, we,discuss theoretical guarantees on the conductance of the output,vertex set. Also, we experimentally demonstrate that our clustering,algorithms outperform existing methods in terms of both the solution quality and running time. To the best of our knowledge, ours,are the first practical algorithms for hypergraphs with theoretical,guarantees on the conductance of the output set.
A hypergraph is a useful combinatorial object to model ternary or,higher-order relations among entities. Clustering hypergraphs is,a fundamental task in network analysis. In this study, we develop,two clustering algorithms based on personalized PageRank on hypergraphs. The first one is local in the sense that its goal is to find,a tightly connected vertex set with a bounded volume including a,specified vertex. The second one is global in the sense that its goal,is to find a tightly connected vertex set. For both algorithms, we,discuss theoretical guarantees on the conductance of the output,vertex set. Also, we experimentally demonstrate that our clustering,algorithms outperform existing methods in terms of both the solution quality and running time. To the best of our knowledge, ours,are the first practical algorithms for hypergraphs with theoretical,guarantees on the conductance of the output set.
SIGKDD_2020
Comments
loading...
Reaction (0) | Note (0)
    📝 No reactions and notes yet
    Be the first one to share your thoughts!
Recommended