Active Vision for Early Recognition of Human Actions - Crossminds logo

Active Vision for Early Recognition of Human Actions

Sep 29, 2020
Authors: Boyu Wang, Lihan Huang, Minh Hoai Description: We propose a method for early recognition of human actions, one that can take advantages of multiple cameras while satisfying the constraints due to limited communication bandwidth and processing power. Our method considers multiple cameras, and at each time step, it will decide the best camera to use so that a confident recognition decision can be reached as soon as possible. We formulate the camera selection problem as a sequential decision process, and learn a view selection policy based on reinforcement learning. We also develop a novel recurrent neural network architecture to account for the unobserved video frames and the irregular intervals between the observed frames. Experiments on three datasets demonstrate the effectiveness of our approach for early recognition of human actions.

Reactions (0) | Note
    📝 No reactions yet
    Be the first one to share your thoughts!