Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation - Crossminds
CrossMind.ai logo

Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation

Sep 29, 2020
|
37 views
|
Details
Authors: Jianqiang Wan, Yang Liu, Donglai Wei, Xiang Bai, Yongchao Xu Description: Image segmentation is a fundamental vision task and still remains a crucial step for many applications. In this paper, we propose a fast image segmentation method based on a novel super boundary-to-pixel direction (super-BPD) and a customized segmentation algorithm with super-BPD. Precisely, we define BPD on each pixel as a two-dimensional unit vector pointing from its nearest boundary to the pixel. In the BPD, nearby pixels from different regions have opposite directions departing from each other, and nearby pixels in the same region have directions pointing to the other or each other (i.e., around medial points). We make use of such property to partition image into super-BPDs, which are novel informative superpixels with robust direction similarity for fast grouping into segmentation regions. Extensive experimental results on BSDS500 and Pascal Context demonstrate the accuracy and efficiency of the proposed super-BPD in segmenting images. Specifically, we achieve comparable or superior performance with MCG while running at ~25fps vs 0.07fps. Super-BPD also exhibits a noteworthy transferability to unseen scenes.

Comments
loading...
Reactions (0) | Note
    📝 No reactions yet
    Be the first one to share your thoughts!
loading...
Recommended