Ultra Low Bitrate Learned Image Compression by Selective Detail Decoding - Crossminds
CrossMind.ai logo

Ultra Low Bitrate Learned Image Compression by Selective Detail Decoding

Sep 29, 2020
|
30 views
Details
Authors: Hiroaki Akutsu, Akifumi Suzuki, Zhisheng Zhong, Kiyoharu Aizawa Description: Neural network-based learned image compression has a special feature in that a differentiable image quality index can be used as a loss function directly, and a decoder and an encoder can be optimized by the quality index through end-to-end learning. From a perceptual view, we hypothesized that there were detailed important parts in pictures. For those parts, we applied an additional decoder and weighted loss function to achieve both low bitrate image compression and perceptual quality. Furthermore, our approach can automatically determine which region an additional decoder will take for an input image. Experiments visually showed that the proposed method can recognize important parts, such as text and faces, and we show that our method can decode images more clearly than the simple MS-SSIM training model.

Comments
loading...
Reactions (0) | Note
    📝 No reactions yet
    Be the first one to share your thoughts!
loading...
Recommended