A Certifiably Globally Optimal Solution to Generalized Essential Matrix Estimation

CVPR 2020

A Certifiably Globally Optimal Solution to Generalized Essential Matrix Estimation

Sep 29, 2020
|
42 views
Details
Authors: Ji Zhao, Wanting Xu, Laurent Kneip Description: We present a convex optimization approach for generalized essential matrix (GEM) estimation. The six-point minimal solver for the GEM has poor numerical stability and applies only for a minimal number of points. Existing non-minimal solvers for GEM estimation rely on either local optimization or relinearization techniques, which impedes high accuracy in common scenarios. Our proposed non-minimal solver minimizes the sum of squared residuals by reformulating the problem as a quadratically constrained quadratic program. The globally optimal solution is thus obtained by a semidefinite relaxation. The algorithm retrieves certifiably globally optimal solutions to the original non-convex problem in polynomial time. We also provide the necessary and sufficient conditions to recover the optimal GEM from the relaxed problems. The improved performance is demonstrated over experiments on both synthetic and real multi-camera systems.

Comments
loading...