Adaptive Convolution for Text Classification

ACL 2019

Details
Abstract: In this paper, we present an adaptive convolution for text classification to give flexibility to convolutional neural networks (CNNs). Unlike traditional convolutions which utilize the same set of filters regardless of different inputs, the adaptive convolution employs adaptively generated convolutional filters conditioned on inputs. We achieve this by attaching filter-generating networks, which are carefully designed to generate input-specific filters, to convolution blocks in existing CNNs. We show the efficacy of our approach in existing CNNs based on the performance evaluation. Our evaluation indicates that all of our baselines achieve performance improvements with adaptive convolutions as much as up to 2.6 percentage point in seven benchmark text classification datasets. Authors: Byung-Ju Choi, Jun-Hyung Park, SangKeun Lee (Korea University)

Comments
loading...