Attention Strategies for Multi-Source Sequence-to-Sequence Learning

ACL 2017

Attention Strategies for Multi-Source Sequence-to-Sequence Learning

Jan 27, 2021
|
29 views
|
|
Code
Details
Abstract: Modeling attention in neural multi-source sequence-to-sequence learning remains a relatively unexplored area, despite its usefulness in tasks that incorporate multiple source languages or modalities. We propose two novel approaches to combine the outputs of attention mechanisms over each source sequence, flat and hierarchical. We compare the proposed methods with existing techniques and present results of systematic evaluation of those methods on the WMT16 Multimodal Translation and Automatic Post-editing tasks. We show that the proposed methods achieve competitive results on both tasks. Authors: Jindřich Libovický, Jindřich Helcl (Charles University)

Comments
loading...