Bayesian Optimisation over Multiple Continuous and Categorical Inputs

ICML 2020

Bayesian Optimisation over Multiple Continuous and Categorical Inputs

Jul 12, 2020
|
24 views
|
Details
Efficient optimisation of black-box problems that comprise both continuous and categorical inputs is important, yet poses significant challenges. We propose a new approach, Continuous and Categorical Bayesian Optimisation (CoCaBO), which combines the strengths of multi-armed bandits and Bayesian optimisation to select values for both categorical and continuous inputs. We model this mixed-type space using a Gaussian Process kernel, designed to allow sharing of information across multiple categorical variables, each with multiple possible values; this allows CoCaBO to leverage all available data efficiently. We extend our method to the batch setting and propose an efficient selection procedure that dynamically balances exploration and exploitation whilst encouraging batch diversity. We demonstrate empirically that our method outperforms existing approaches on both synthetic and real-world optimisation tasks with continuous and categorical inputs. Speakers: Robin Ru, Ahsan Alvi, Vu Nguyen, Michael A Osborne, Stephen Roberts

Comments
loading...