CICERO: An AI agent that negotiates, persuades, and cooperates with people

CICERO: An AI agent that negotiates, persuades, and cooperates with people

Nov 30, 2022
|
26 views
Details
#ai #cicero #diplomacy A team from Meta AI has developed Cicero, an agent that can play the game Diplomacy, in which players have to communicate via chat messages to coordinate and plan into the future. Paper Title: Human-level play in the game of Diplomacy by combining language models with strategic reasoning Commented game by human expert: https://www.youtube.com/watch?v=u5192bvUS7k OUTLINE: 0:00 - Introduction 9:50 - AI in cooperation games 13:50 - Cicero agent overview 25:00 - A controllable dialogue model 36:50 - Dialogue-conditional strategic planning 49:00 - Message filtering 53:45 - Cicero's play against humans 55:15 - More examples & discussion Homepage: https://ai.facebook.com/research/cicero/ Code: https://github.com/facebookresearch/diplomacy_cicero Blog: https://ai.facebook.com/blog/cicero-ai-negotiates-persuades-and-cooperates-with-people/ Paper: https://www.science.org/doi/10.1126/science.ade9097 Abstract: Despite much progress in training AI systems to imitate human language, building agents that use language to communicate intentionally with humans in interactive environments remains a major challenge. We introduce Cicero, the first AI agent to achieve human-level performance in Diplomacy, a strategy game involving both cooperation and competition that emphasizes natural language negotiation and tactical coordination between seven players. Cicero integrates a language model with planning and reinforcement learning algorithms by inferring players' beliefs and intentions from its conversations and generating dialogue in pursuit of its plans. Across 40 games of an anonymous online Diplomacy league, Cicero achieved more than double the average score of the human players and ranked in the top 10% of participants who played more than one game. Authors: Anton Bakhtin, Noam Brown, Emily Dinan, Gabriele Farina, Colin Flaherty, Daniel Fried, Andrew Goff, Jonathan Gray, Hengyuan Hu, Athul Paul Jacob, Mojtaba Komeili, Karthik Konath, Minae Kwon, Adam Lerer, Mike Lewis, Alexander H. Miller, Sasha Mitts, Adithya Renduchintala, Stephen Roller, Dirk Rowe, Weiyan Shi, Joe Spisak, Alexander Wei, David Wu, Hugh Zhang, Markus Zijlstra Links: Homepage: https://ykilcher.com Merch: https://ykilcher.com/merch YouTube: https://www.youtube.com/c/yannickilcher Twitter: https://twitter.com/ykilcher Discord: https://ykilcher.com/discord LinkedIn: https://www.linkedin.com/in/ykilcher If you want to support me, the best thing to do is to share out the content :) If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this): SubscribeStar: https://www.subscribestar.com/yannickilcher Patreon: https://www.patreon.com/yannickilcher Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2 Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

0:00 - Introduction 9:50 - AI in cooperation games 13:50 - Cicero agent overview 25:00 - A controllable dialogue model 36:50 - Dialogue-conditional strategic planning 49:00 - Message filtering 53:45 - Cicero's play against humans 55:15 - More examples & discussion
Comments
loading...