Complex Markov Logic Networks: Expressivity and Liftability

Complex Markov Logic Networks: Expressivity and Liftability

Dec 29, 2020
|
38 views
|
Details
We study expressivity of Markov logic networks (MLNs). We introduce complex MLNs, which use complex-valued weights, and we show that, unlike standard MLNs with real-valued weights, complex MLNs are fully expressive. We then observe that discrete Fourier transform can be computed using weighted first order model counting (WFOMC) with complex weights and use this observation to design an algorithm for computing relational marginal polytopes which needs substantially less calls to a WFOMC oracle than a recent algorithm. Authors: Ondrej Kuzelka (Czech Technical University)

Comments
loading...