Computational Parquetry: Fabricated Style Transfer with Wood Pixels logo
Neural networks trained to do style transfer of photos or video can also be applied to more complicated styles like wood. Abstract: Parquetry is the art and craft of decorating a surface with a pattern of differently colored veneers of wood, stone or other materials. Traditionally, the process of designing and making parquetry has been driven by color, using the texture found in real wood only for stylization or as a decorative effect. Here, we introduce a computational pipeline that draws from the rich natural structure of strongly textured real-world veneers as a source of detail in order to approximate a target image as faithfully as possible using a manageable number of parts. This challenge is closely related to the established problems of patch-based image synthesis and stylization in some ways, but fundamentally different in others. Most importantly, the limited availability of resources (any piece of wood can only be used once) turns the relatively simple problem of finding the right piece for the target location into the combinatorial problem of finding optimal parts while avoiding resource collisions. We introduce an algorithm that allows to efficiently solve an approximation to the problem. It further addresses challenges like gamut mapping, feature characterization and the search for fabricable cuts. We demonstrate the effectiveness of the system by fabricating a selection of pieces of parquetry from different kinds of unstained wood veneer.