[CVPR 2020 Award Nominee] Disentangled Image Generation Through Structured Noise Injection

CVPR 2020

[CVPR 2020 Award Nominee] Disentangled Image Generation Through Structured Noise Injection

Sep 24, 2020
|
65 views
|
Details
Authors: Yazeed Alharbi, Peter Wonka Description: We explore different design choices for injecting noise into generative adversarial networks (GANs) with the goal of disentangling the latent space. Instead of traditional approaches, we propose feeding multiple noise codes through separate fully-connected layers respectively. The aim is restricting the influence of each noise code to specific parts of the generated image. We show that disentanglement in the first layer of the generator network leads to disentanglement in the generated image. Through a grid-based structure, we achieve several aspects of disentanglement without complicating the network architecture and without requiring labels. We achieve spatial disentanglement, scale-space disentanglement, and disentanglement of the foreground object from the background style allowing fine-grained control over the generated images. Examples include changing facial expressions in face images, changing beak length in bird images, and changing car dimensions in car images. This empirically leads to better disentanglement scores than state-of-the-art methods on the FFHQ dataset. Full Paper: https://arxiv.org/abs/2004.12411

Comments
loading...