Deep Keyphrase Generation

ACL 2017

Deep Keyphrase Generation

Jan 22, 2021
|
44 views
|
|
Code
Details
Abstract: Keyphrase provides highly-summative information that can be effectively used for understanding, organizing and retrieving text content. Though previous studies have provided many workable solutions for automated keyphrase extraction, they commonly divided the to-be-summarized content into multiple text chunks, then ranked and selected the most meaningful ones. These approaches could neither identify keyphrases that do not appear in the text, nor capture the real semantic meaning behind the text. We propose a generative model for keyphrase prediction with an encoder-decoder framework, which can effectively overcome the above drawbacks. We name it as deep keyphrase generation since it attempts to capture the deep semantic meaning of the content with a deep learning method. Empirical analysis on six datasets demonstrates that our proposed model not only achieves a significant performance boost on extracting keyphrases that appear in the source text, but also can generate absent keyphrases based on the semantic meaning of the text. Authors: Rui Meng, Sanqiang Zhao, Shuguang Han, Daqing He, Peter Brusilovsky, Yu Chi (University of Pittsburgh)

Comments
loading...