Eccentricity-dependent Spatio-temporal Flicker Fusion for Foveated Graphics | SIGGRAPH 2021

Eccentricity-dependent Spatio-temporal Flicker Fusion for Foveated Graphics | SIGGRAPH 2021

Apr 29, 2021
|
26 views
Details
Project website: https://www.computationalimaging.org/publications/cff/ Virtual and augmented reality (VR/AR) displays strive to provide a resolution, framerate and field of view that matches the perceptual capabilities of the human visual system, all while constrained by limited compute budgets and transmission bandwidths of wearable computing systems. Foveated graphics techniques have emerged that could achieve these goals by exploiting the falloff of spatial acuity in the periphery of the visual field. However, considerably less attention has been given to temporal aspects of human vision, which also vary across the retina. This is in part due to the lack of a unified eccentricity-dependent spatio-temporal model of the visual system. Here, we introduce the first such model, experimentally measuring and computationally fitting a model of critical flicker fusion. In this way, our model is unique in enabling the prediction of temporal information that is imperceptible for a certain spatial frequency, eccentricity, and range of luminance levels. We validate our model with an image quality user study, and use it to predict potential bandwidth savings 7x higher than those afforded by current spatial-only foveated models. As such, this work forms the enabling foundation for new temporally foveated graphics techniques.

Comments
loading...