Fastformer: Additive Attention Can Be All You Need (Machine Learning Research Paper Explained)

Fastformer: Additive Attention Can Be All You Need (Machine Learning Research Paper Explained)

Aug 27, 2021
|
25 views
Details
#attention #transformer #fastformer Transformers have become the dominant model class in the last few years for large data, but their quadratic complexity in terms of sequence length has plagued them until now. Fastformer claims to be the fastest and most performant linear attention variant, able to consume long contexts at once. This is achieved by a combination of additive attention and elementwise products. While initial results look promising, I have my reservations... OUTLINE: 0:00 - Intro & Outline 2:15 - Fastformer description 5:20 - Baseline: Classic Attention 10:00 - Fastformer architecture 12:50 - Additive Attention 18:05 - Query-Key element-wise multiplication 21:35 - Redundant modules in Fastformer 25:00 - Problems with the architecture 27:30 - Is this even attention? 32:20 - Experimental Results 34:50 - Conclusion & Comments Paper: https://arxiv.org/abs/2108.09084 Abstract: Transformer is a powerful model for text understanding. However, it is inefficient due to its quadratic complexity to input sequence length. Although there are many methods on Transformer acceleration, they are still either inefficient on long sequences or not effective enough. In this paper, we propose Fastformer, which is an efficient Transformer model based on additive attention. In Fastformer, instead of modeling the pair-wise interactions between tokens, we first use additive attention mechanism to model global contexts, and then further transform each token representation based on its interaction with global context representations. In this way, Fastformer can achieve effective context modeling with linear complexity. Extensive experiments on five datasets show that Fastformer is much more efficient than many existing Transformer models and can meanwhile achieve comparable or even better long text modeling performance. Authors: Chuhan Wu, Fangzhao Wu, Tao Qi, Yongfeng Huang Links: TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick YouTube: https://www.youtube.com/c/yannickilcher Twitter: https://twitter.com/ykilcher Discord: https://discord.gg/4H8xxDF BitChute: https://www.bitchute.com/channel/yannic-kilcher Minds: https://www.minds.com/ykilcher Parler: https://parler.com/profile/YannicKilcher LinkedIn: https://www.linkedin.com/in/yannic-kilcher-488534136/ BiliBili: https://space.bilibili.com/1824646584 If you want to support me, the best thing to do is to share out the content :) If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this): SubscribeStar: https://www.subscribestar.com/yannickilcher Patreon: https://www.patreon.com/yannickilcher Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2 Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

0:00 - Intro & Outline 2:15 - Fastformer description 5:20 - Baseline: Classic Attention 10:00 - Fastformer architecture 12:50 - Additive Attention 18:05 - Query-Key element-wise multiplication 21:35 - Redundant modules in Fastformer 25:00 - Problems with the architecture 27:30 - Is this even attention? 32:20 - Experimental Results 34:50 - Conclusion & Comments
Comments
loading...