Feedback Transformers: Addressing Some Limitations of Transformers with Feedback Memory (Explained)
CrossMind.ai logo
Details
#ai #science #transformers Autoregressive Transformers have taken over the world of Language Modeling (GPT-3). However, in order to train them, people use causal masking and sample parallelism, which means computation only happens in a feedforward manner. This results in higher layer information, which would be available, to not be used in the lower layers of subsequent tokens, and leads to a loss in the computational capabilities of the overall model. Feedback Transformers trade-off training speed for access to these representations and demonstrate remarkable improvements in complex reasoning and long-range dependency tasks. OUTLINE: 0:00 - Intro & Overview 1:55 - Problems of Autoregressive Processing 3:30 - Information Flow in Recurrent Neural Networks 7:15 - Information Flow in Transformers 9:10 - Solving Complex Computations with Neural Networks 16:45 - Causal Masking in Transformers 19:00 - Missing Higher Layer Information Flow 26:10 - Feedback Transformer Architecture 30:00 - Connection to Attention-RNNs 36:00 - Formal Definition 37:05 - Experimental Results 43:10 - Conclusion & Comments Paper: https://arxiv.org/abs/2002.09402 My video on Attention: https://youtu.be/iDulhoQ2pro Abstract: Transformers have been successfully applied to sequential, auto-regressive tasks despite being feedforward networks. Unlike recurrent neural networks, Transformers use attention to capture temporal relations while processing input tokens in parallel. While this parallelization makes them computationally efficient, it restricts the model from fully exploiting the sequential nature of the input. The representation at a given layer can only access representations from lower layers, rather than the higher level representations already available. In this work, we propose the Feedback Transformer architecture that exposes all previous representations to all future representations, meaning the lowest representation of the current timestep is formed from the highest-level abstract representation of the past. We demonstrate on a variety of benchmarks in language modeling, machine translation, and reinforcement learning that the increased representation capacity can create small, shallow models with much stronger performance than comparable Transformers. Authors: Angela Fan, Thibaut Lavril, Edouard Grave, Armand Joulin, Sainbayar Sukhbaatar Links: TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick YouTube: https://www.youtube.com/c/yannickilcher Twitter: https://twitter.com/ykilcher Discord: https://discord.gg/4H8xxDF BitChute: https://www.bitchute.com/channel/yannic-kilcher Minds: https://www.minds.com/ykilcher Parler: https://parler.com/profile/YannicKilcher LinkedIn: https://www.linkedin.com/in/yannic-kilcher-488534136/ BiliBili: https://space.bilibili.com/1824646584 If you want to support me, the best thing to do is to share out the content :) If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this): SubscribeStar: https://www.subscribestar.com/yannickilcher Patreon: https://www.patreon.com/yannickilcher Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2 Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

0:00 - Intro & Overview 1:55 - Problems of Autoregressive Processing 3:30 - Information Flow in Recurrent Neural Networks 7:15 - Information Flow in Transformers 9:10 - Solving Complex Computations with Neural Networks 16:45 - Causal Masking in Transformers 19:00 - Missing Higher Layer Information Flow 26:10 - Feedback Transformer Architecture 30:00 - Connection to Attention-RNNs 36:00 - Formal Definition 37:05 - Experimental Results 43:10 - Conclusion & Comments
Comments
loading...