Fixed Priority Global Scheduling from a Deep Learning Perspective

AAAI 2021

Fixed Priority Global Scheduling from a Deep Learning Perspective

Feb 17, 2021
|
30 views
|
Details
Abstract: Deep Learning has been recently recognized as one of the feasible solutions to effectively address combinatorial optimization problems, which are often considered important yet challenging in various research domains. In this work, we first present how to adopt Deep Learning for real-time task scheduling through our preliminary work upon fixed priority global scheduling (FPGS) problems. We then briefly discuss possible generalizations of Deep Learning adoption for several realistic and complicated FPGS scenarios, e.g., scheduling tasks with dependency, mixed-criticality task scheduling. We believe that there are many opportunities for leveraging advanced Deep Learning technologies to improve the quality of scheduling in various system configurations and problem scenarios. Authors: Hyunsung Lee, Michael Wang, Honguk Woo (Sungkyunkwan University, Telecom SudParis)

Comments
loading...