Graph neural induction of value iteration

ICML 2020

Details
Many reinforcement learning tasks can benefit from explicit planning based on an internal model of the environment. Previously, such planning components have been incorporated through a neural network that partially aligns with the computational graph of value iteration. Such network have so far been focused on restrictive environments (e.g. grid-worlds), and modelled the planning procedure only indirectly. We relax these constraints, proposing a graph neural network (GNN) that executes the value iteration (VI) algorithm, across arbitrary environment models, with direct supervision on the intermediate steps of VI. The results indicate that GNNs are able to model value iteration accurately, recovering favourable metrics and policies across a variety of out-of-distribution tests. This suggests that GNN executors with strong supervision are a viable component within deep reinforcement learning systems. Speakers: Andreea Deac, Pierre-Luc Bacon, Jian Tang

Comments
loading...