IADS: Integrating Feature Extraction to Automated Machine Learning Pipeline

ICPR 2020

IADS: Integrating Feature Extraction to Automated Machine Learning Pipeline

Jan 15, 2021
|
42 views
Details
Abstract: Machine learning techniques and algorithms are employed in many application domains such as financial applications, recommendation systems, medical diagnosis systems, and self-driving cars. They play a crucial role in harnessing the power of Big Data being produced every day in our digital world. In general, building a well-performing machine learning pipeline is an iterative and complex process that requires a solid understanding of various techniques that can be used in each component of the machine learning pipeline. Feature engineering (FE) is one of the most time-consuming steps in building machine learning pipelines. It requires a deep understanding of the domain and data exploration to discover relevant hand-crafted features from raw data. In this work, we empirically evaluate the impact of integrating an automated feature extraction tool -AutoFeat- into two automated machine learning frameworks, namely, Auto-Sklearn and TPOT, on their predictive performance. Besides, we discuss the limitations ofAutoFeatthat need to be addressed in order to improve the predictive performance of the automated machine learning frameworks on real-world datasets. Authors: Hassan Eldeeb, Shota Amashukeli, Radwa El (University of Tartu)

Comments
loading...