Latent-space Physics: Towards Learning the Temporal Evolution of Fluid Flow
CrossMind.ai logo

Latent-space Physics: Towards Learning the Temporal Evolution of Fluid Flow

Mar 01, 2019
|
21 views
|
Details
Abstract: We propose a method for the data-driven inference of temporal evolutions of physical functions with deep learning. More specifically, we target fluid flows, i.e. Navier-Stokes problems, and we propose a novel LSTM-based approach to predict the changes of pressure fields over time. The central challenge in this context is the high dimensionality of Eulerian space-time data sets. We demonstrate for the first time that dense 3D+time functions of physics system can be predicted within the latent spaces of neural networks, and we arrive at a neural-network based simulation algorithm with significant practical speed-ups. We highlight the capabilities of our method with a series of complex liquid simulations, and with a set of single-phase buoyancy simulations. With a set of trained networks, our method is more than two orders of magnitudes faster than a traditional pressure solver. Additionally, we present and discuss a series of detailed evaluations for the different components of our algorithm. Authors: Steffen Wiewel, Moritz Becher, Nils Thuerey (Technical University of Munich)

Comments
loading...