Neural Open Information Extraction

ACL 2018

Neural Open Information Extraction

Jan 28, 2021
|
35 views
|
Details
Abstract: Conventional Open Information Extraction (Open IE) systems are usually built on hand-crafted patterns from other NLP tools such as syntactic parsing, yet they face problems of error propagation. In this paper, we propose a neural Open IE approach with an encoder-decoder framework. Distinct from existing methods, the neural Open IE approach learns highly confident arguments and relation tuples bootstrapped from a state-of-the-art Open IE system. An em-pirical study on a large benchmark dataset shows that the neural Open IE system significantly outperforms several baselines, while maintaining comparable computational efficiency. Authors: Lei Cui, Furu Wei, Ming Zhou (Microsoft Research Asia)

Comments
loading...