Node2Vec: Scalable Feature Learning for Networks | ML with Graphs | Research Paper Walkthrough
CrossMind.ai logo
Details
#node2vec #graphneuralnetwork #embeddings In this video, we will walkthrough one of the foundational papers in the field of graph neural networks called Node2Vec, that tries to learn latent representation for nodes in the graph in a unsupervised way by using the notion of skip-gram algorithm applied on Biased Random walks. This work extends the previous work of DeepWalk by introducing a controllable random walk procedure. ⏩ Abstract: Prediction tasks over nodes and edges in networks require careful effort in engineering features used by learning algorithms. Recent research in the broader field of representation learning has led to significant progress in automating prediction by learning the features themselves. However, present feature learning approaches are not expressive enough to capture the diversity of connectivity patterns observed in networks. Here we propose node2vec, an algorithmic framework for learning continuous feature representations for nodes in networks. In node2vec, we learn a mapping of nodes to a low-dimensional space of features that maximizes the likelihood of preserving network neighborhoods of nodes. We define a flexible notion of a node’s network neighborhood and design a biased random walk procedure, which efficiently explores diverse neighborhoods. Our algorithm generalizes prior work which is based on rigid notions of network neighborhoods, and we argue that the added flexibility in exploring neighborhoods is the key to learning richer representations. We demonstrate the efficacy of node2vec over existing state-ofthe-art techniques on multi-label classification and link prediction in several real-world networks from diverse domains. Taken together, our work represents a new way for efficiently learning stateof-the-art task-independent representations in complex networks. General Terms: Algorithms; Experimentation. Keywords: Information networks, Feature learning, Node embeddings, Graph representations. Please feel free to share out the content and subscribe to my channel :) ⏩ Subscribe - https://youtube.com/channel/UCoz8NrwgL7U9535VNc0mRPA?sub_confirmation=1 ⏩ OUTLINE: 0:00 - Abstract and Background 4:10 - IBFS and DFS traversal for Biased Random Walk 5:25 - Feature Learning Framework 9:25 - Search Bias in Node2Vec 12:30 - Node2Vec Algorithm - Pseudo Code ⏩ Paper Title: node2vec: Scalable Feature Learning for Networks ⏩ Paper: https://arxiv.org/pdf/1607.00653.pdf ⏩ Author: Aditya Grover, Jure Leskovec ⏩ Organisation: Stanford University ********************************************* ⏩ Youtube - https://youtube.com/channel/UCoz8NrwgL7U9535VNc0mRPA ⏩ Blog - https://prakhartechviz.blogspot.com ⏩ LinkedIn - https://linkedin.com/in/prakhar21 ⏩ Medium - https://medium.com/@prakhar.mishra ⏩ GitHub - https://github.com/prakhar21 ********************************************* Please feel free to share out the content and subscribe to my channel :) ⏩ Subscribe - https://youtube.com/channel/UCoz8NrwgL7U9535VNc0mRPA?sub_confirmation=1 Tools I use for making videos :) ⏩ iPad - https://tinyurl.com/y39p6pwc ⏩ Apple Pencil - https://tinyurl.com/y5rk8txn ⏩ GoodNotes - https://tinyurl.com/y627cfsa #techviz #datascienceguy #machinelearning #graphs #graphembeddings #randomwalk #deeplearning

Comments
loading...