Partial Trace Regression and Low-Rank Kraus Decomposition

ICML 2020

Partial Trace Regression and Low-Rank Kraus Decomposition

Jul 12, 2020
|
27 views
|
Details
The trace regression model, a direct extension of the well-studied linear regression model, allows one to map matrices to real-valued outputs. We here introduce an even more general model, namely the partial-trace regression model, a family of linear mappings from matrix-valued inputs to matrix-valued outputs; this model subsumes the trace regression model and thus the linear regression model. Borrowing tools from quantum information theory, where partial trace operators have been extensively studied, we propose a framework for learning partial trace regression models from data by taking advantage of the so-called low-rank Kraus representation of completely positive maps. We show the relevance of our framework with synthetic and real-world experiments conducted for both i) matrix-to-matrix regression and ii) positive semidefinite matrix completion, two tasks which can be formulated as partial trace regression problems. Speakers: Hachem Kadri, Stephane Ayache, Riikka Huusari, Alain Rakotomamonjy, Ralaivola Liva

Comments
loading...