Position-based Scaled Gradient for Model Quantization and Sparse Training

NeurIPS 2020

Position-based Scaled Gradient for Model Quantization and Sparse Training

Dec 06, 2020
|
32 views
|
Details
We propose the position-based scaled gradient (PSG) that scales the gradient depending on the position of a weight vector to make it more compression-friendly. First, we theoretically show that applying PSG to the standard gradient descent (GD), which is called PSGD, is equivalent to the GD in the warped weight space, a space made by warping the original weight space via an appropriately designed invertible function. Second, we empirically show that PSG acting as a regularizer to a weight vector is very useful in model compression domains such as quantization and sparse training. PSG reduces the gap between the weight distributions of a full-precision model and its compressed counterpart. This enables the versatile deployment of a model either as an uncompressed mode or as a compressed mode depending on the availability of resources. The experimental results on CIFAR-10/100 and Imagenet datasets show the effectiveness of the proposed PSG in both domains of sparse training and quantization even for extremely low bits. Speakers: Jangho Kim, KiYoon Yoo, Nojun Kwak

Comments
loading...