Real-World Person Re-Identification via Degradation Invariance Learning

CVPR 2020

Real-World Person Re-Identification via Degradation Invariance Learning

Sep 29, 2020
|
40 views
|
Details
Authors: Yukun Huang, Zheng-Jun Zha, Xueyang Fu, Richang Hong, Liang Li Description: Person re-identification (Re-ID) in real-world scenarios usually suffers from various degradation factors, e.g., low-resolution, weak illumination, blurring and adverse weather. On the one hand, these degradations lead to severe discriminative information loss, which significantly obstructs identity representation learning. on the other hand, the feature mismatch problem caused by low-level visual variations greatly reduces retrieval performance. An intuitive solution to this problem is to utilize low-level image restoration methods to improve the image quality. However, existing restoration methods cannot directly serve to real-world Re-ID due to various limitations, e.g., the requirements of reference samples, domain gap between synthesis and reality, and incompatibility between low-level and high-level methods. In this paper, to solve the above problem, we propose a degradation invariance learning framework for real-world person Re-ID. By introducing a self-supervised disentangled representation learning strategy, our method is able to simultaneously extract identity-related robust features and remove real-world degradations without extra supervision. We use low-resolution images as the main demonstration, and experiments show that our approach is able to achieve state-of-the-art performance on several Re-ID benchmarks. In addition, our framework can be easily extended to other real-world degradation factors, such as weak illumination, with only a few modifications.

Comments
loading...