Recurrent Neural Networks as Weighted Language Recognizers

ACL 2018

Abstract: We investigate the computational complexity of various problems for simple recurrent neural networks (RNNs) as formal models for recognizing weighted languages. We focus on the single-layer, ReLU-activation, rational-weight RNNs with softmax, which are commonly used in natural language processing applications. We show that most problems for such RNNs are undecidable, including consistency, equivalence, minimization, and the determination of the highest-weighted string. However, for consistent RNNs the last problem becomes decidable, although the solution length can surpass all computable bounds. If additionally the string is limited to polynomial length, the problem becomes NP-complete and APX-hard. In summary, this shows that approximations and heuristic algorithms are necessary in practical applications of those RNNs. Authors: Yining Chen, Sorcha Gilroy, Andreas Maletti, Jonathan May, Kevin Knight (Dartmouth College, University of Edinburgh, Universitat Leipzig, University of Southern California)