SL-DML: Signal Level Deep Metric Learning for Multimodal One-Shot Action Recognition

ICPR 2020

SL-DML: Signal Level Deep Metric Learning for Multimodal One-Shot Action Recognition

Jan 15, 2021
|
29 views
|
|
Code
Details
Abstract: Recognizing an activity with a single reference sample using metric learning approaches is a promising research field. The majority of few-shot methods focus on object recognition or face-identification. We propose a metric learning approach to reduce the action recognition problem to a nearest neighbor search in embedding space. We encode signals into images and extract features using a deep residual CNN. Using triplet loss, we learn a feature embedding. The resulting encoder transforms features into an embedding space in which closer distances encode similar actions while higher distances encode different actions. Our approach is based on a signal level formulation and remains flexible across a variety of modalities. It further outperforms the baseline on the large scale NTU RGB+D 120 dataset for the One-Shot action recognition protocol by 5.6%. With just 60% of the training data, our approach still outperforms the baseline approach by 3.7%. With 40% of the training data, our approach performs comparably well as the second follow up. Further, we show that our approach generalizes well in experiments on the UTD-MHAD dataset for inertial, skeleton and fused data and the Simitate dataset for motion capturing data. Furthermore, our inter-joint and inter-sensor experiments suggest good capabilities on previously unseen setups. Authors: Raphael Memmesheimer, Nick Theisen, Dietrich Paulus (University of Koblenz-Landau)

Comments
loading...