Sparse Coding of Neural Word Embeddings for Multilingual Sequence Labeling

ACL 2017

Sparse Coding of Neural Word Embeddings for Multilingual Sequence Labeling

Jan 21, 2021
|
23 views
|
Details
Abstract: In this paper we propose and carefully evaluate a sequence labeling framework which solely utilizes sparse indicator features derived from dense distributed word representations. The proposed model obtains (near) state-of-the art performance for both part-of-speech tagging and named entity recognition for a variety of languages. Our model relies only on a few thousand sparse coding-derived features, without applying any modification of the word representations employed for the different tasks. The proposed model has favorable generalization properties as it retains over 89.8% of its average POS tagging accuracy when trained at 1.2% of the total available training data, i.e.~150 sentences per language. Authors: Gábor Berend (University of Szeged)

Comments
loading...