Spike and slab variational Bayes for high dimensional logistic regression

NeurIPS 2020

Spike and slab variational Bayes for high dimensional logistic regression

Dec 06, 2020
|
57 views
|
Details
Variational Bayes (VB) is a popular scalable alternative to Markov chain Monte Carlo for Bayesian inference. We study a mean-field spike and slab VB approximation of widely used Bayesian model selection priors in sparse high-dimensional logistic regression. We provide non-asymptotic theoretical guarantees for the VB posterior in both $\ell_2$ and prediction loss for a sparse truth, giving optimal (minimax) convergence rates. Since the VB algorithm does not depend on the unknown truth to achieve optimality, our results shed light on effective prior choices. We confirm the improved performance of our VB algorithm over common sparse VB approaches in a numerical study. Speakers: Kolyan Ray, Botond Szabo, Gabriel Clara

Comments
loading...