Unsupervised Discovery of Interpretable Directions in the GAN Latent Space

ICML 2020

Unsupervised Discovery of Interpretable Directions in the GAN Latent Space

Jul 12, 2020
|
43 views
|
|
Code
Details
The latent spaces of typical GAN models often have semantically meaningful directions. Moving in these directions corresponds to human-interpretable image transformations, such as zooming or recoloring, enabling a more controllable generation process. However, the discovery of such directions is currently performed in a supervised manner, requiring human labels, pretrained models, or some form of self-supervision. These requirements can severely limit a range of directions existing approaches can discover. In this paper, we introduce an unsupervised method to identify interpretable directions in the latent space of a pretrained GAN model. By a simple model-agnostic procedure, we find directions corresponding to sensible semantic manipulations without any form of (self-)supervision. Furthermore, we reveal several non-trivial findings, which would be difficult to obtain by existing methods, e.g., a direction corresponding to background removal. As an immediate practical benefit of our work, we show how to exploit this finding to achieve a new state-of-the-art for the problem of saliency detection. Speakers: Andrey Voynov, Artem Babenko

Comments
loading...