Unsupervised Domain Adaptation With Hierarchical Gradient Synchronization

CVPR 2020

Unsupervised Domain Adaptation With Hierarchical Gradient Synchronization

Sep 29, 2020
|
26 views
Details
Authors: Lanqing Hu, Meina Kan, Shiguang Shan, Xilin Chen Description: Domain adaptation attempts to boost the performance on a target domain by borrowing knowledge from a well established source domain. To handle the distribution gap between two domains, the prominent approaches endeavor to extract domain-invariant features. It is known that after a perfect domain alignment the domain-invariant representations of two domains should share the same characteristics from perspective of the overview and also any local piece. Inspired by this, we propose a novel method called Hierarchical Gradient Synchronization to model the synchronization relationship among the local distribution pieces and global distribution, aiming for more precise domain-invariant features. Specifically, the hierarchical domain alignments including class-wise alignment, group-wise alignment and global alignment are first constructed. Then, these three types of alignment are constrained to be consistent to ensure better structure preservation. As a result, the obtained features are domain invariant and intrinsically structure preserved. As evaluated on extensive domain adaptation tasks, our proposed method achieves state-of-the-art classification performance on both vanilla unsupervised domain adaptation and partial domain adaptation.

Comments
loading...