Variance Reduction on Adaptive Stochastic Mirror Descent

NeurIPS 2020

Details
We study the idea of variance reduction applied to adaptive stochastic mirror descent algorithms in nonsmooth nonconvex finite-sum optimization problems. We propose a simple yet generalized adaptive mirror descent algorithm with variance reduction named SVRAMD and provide its convergence analysis in different settings. We prove that variance reduction reduces the gradient complexity of most adaptive mirror descent algorithms and boost their convergence. In particular, our general theory implies variance reduction can be applied to algorithms using time-varying step sizes and self-adaptive algorithms such as AdaGrad and RMSProp. Moreover, our convergence rates recover the best existing rates of non-adaptive algorithms. We check the validity of our claims using experiments in deep learning. Speakers: Wenjie Li, Zhanyu Wang, Yichen Zhang, Guang Cheng

Comments
loading...